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Noisy One-Dimensional Maps Near a Crisis. 
I. Weak Gaussian White and Colored Noise 
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We study one-dimensional single-humped maps near the boundary crisis at fully 
developed chaos in the presence of additive weak Gaussian white noise. By 
means of a new perturbation-like method the quasi-invariant density is 
calculated from the invariant density at the crisis in the absence of noise. In the 
precritical regime, where the deterministic map may show periodic windows, a 
necessary and sufficient condition for the validity of this method is derived. 
From the quasi-invariant density we determine the escape rate, which has the 
form of a scaling law and compares excellently with results from numerical 
simulations. We find that deterministic transient chaos is stabilized by weak 
noise whenever the maximum of the map is of order z > 1. Finally, we extend 
our method to more general maps near a boundary crisis and to multiplicative 
as well as colored weak Gaussian noise. Within this extended class of noises and 
for single-humped maps with any fixed order - >  0 of the maximum, in the 
scaling law for the escape rate both the critical exponents and the scaling 
function are universal. 

KEY W O R D S :  Noisy map; crisis; escape rate; scaling and universality; 
invariant density; transient chaos; colored noise. 

1. I N T R O D U C T I O N  

U n i v e r s a l i t y  a spec t s  as  well  as a m o r e  de t a i l ed  q u a n t i t a t i v e  u n d e r s t a n d i n g  

o f  p a r t i c u l a r  sys t ems  c lose  to  the  o c c u r r e n c e  o f  q u a l i t a t i v e  c h a n g e s  in t h e i r  

b e h a v i o r  a re  o f  b r o a d  in te res t ,  for  i n s t a n c e ,  in  b i f u r c a t i o n  t heo ry ,  p h a s e  

t r a n s i t i o n s ,  etc. In  t he  field o f  n o n l i n e a r  d i s s ipa t ive  d y n a m i c s  a n  i m p o r t a n t  

e x a m p l e  o f  s u d d e n  q u a l i t a t i v e  c h a n g e s  is a crisis ~)  w h e r e  a c h a o t i c  a t t r a c -  

t o r  co l l ides  w i t h  a coex i s t i ng  u n s t a b l e  fixed p o i n t  o r  pe r iod i c  orbi t .  W h i l e  
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nonlinear deterministic models were successfully applied to a large variety 
of problems arising in very different scientific areas (see ref. 2 for a review), 
near a highly sensitive phenomenon like a crisis a realistic description often 
must include the effect of a small amount of noise. 

The influence of weak noise on various low-dimensional dynamical 
systems near a crisis has been extensively studied for many years by 
analytical and numerical means, 13-14) whereas first experimental results 
have been reported only recently, t~5-~7) In this work we concentrate on 
noisy one-dimensional systems in discrete time. We mainly consider single- 
humped maps f(x) with a maximum of arbitrary order z > 0 close to the 
boundary crisis c~l at fully developed chaos, c'8) Below the crisis, f(x) maps 
the unit interval [0, 1] into itself with a chaotic or, inside a periodic 
window, regular attractor on [0, 1] and a second 'attractor '  at minus 
infinity. At the crisis, the strange attractor collides with the unstable fixed 
point at x = 0 and covers the whole unit interval. Beyond the crisis, one has 
a strange repeller instead of the attractor on [0, 1 ], giving rise to transient 
chaos (see ref. 19 for a review). In the presence of weak but unbounded 
noise the unit interval becomes metastable both above and below the crisis. 
For large times the system approaches a quasistationary state described by 
a quasi-invariant density W(x). A quantity of particular interest is the 
escape rate k out of the unit interval in the quasistationary state. Whereas 
it is well known that the escape rate obeys a scaling law, t4~ only approx- 
imate explicit results have been available so far even in the simplest case of 
additive Gaussian white noise. 13" 4, 8. 9, i1.12) For a detailed discussion of the 
shortcomings or limitations of these results we refer to ref. 20 (see also 
refs. 11 and 21 and the comparison with numerical simulations in Tables I 
and II of the present paper). 

We will present here a new method for the determination of this 
escape rate k which becomes asymptotically exact for small noise strengths 
a and distances .4 from the crisis at .4 = 0 and compares very well with 
numerical simulations. As an important intermediate result the quasi- 
invariant density W(x) also will be found. Moreover, generalizations to 
other kinds of maps f (x )  near a boundary crisis as well as to multiplicative 
and colored weak Gaussian noise will be given. Maps near interior crises 
and band-merging points as well as general (non-Gaussian) uncorrelated 
weak noise will be treated in a subsequent publicationJ z2) A preliminary 
version of our new method has already been used in a study of deter- 
ministic diffusion with noise ~2~ and of noise-induced escape from a point 
attractor with a fractal basin boundary, c-'') 

As an interesting consequence of our rate formula we will find that 
above the crisis the deterministic escape rate is always reduced by a suf- 
ficiently small amount of noise provided the maximum of the map f(x) is 
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of order z > 1. Thus deterministic transient chaos is stabilized by weak 
noise for z >  1 in agreement with a recent numerical investigation by 
Franaszek.~ ]o) As a further remarkable conclusion we will find that for fixed 
z, in the scaling law for the escape rate both the critical exponents and the 
scaling function are universal for the entire class of single-humped maps 
and noises considered in this paper, including multiplicative and colored 
noise. While the universality of the exponents is not unexpected, (4" II) the 
universality of the scaling function has not been observed previously. 
Similar universal scaling laws are well known from other routes to 
chaos(l. 2) described by one-dimensional maps with various kinds of noises. 
For a few representative investigations, dealing with the period-doubling 
and intermittency routes to chaos, see refs. 23 and 24 and refs. 13 and 15, 
respectively. 

We proceed as follows: In the next section the single-humped maps 
f(x) are specified in more detail and the basic equations governing the 
quasi-invariant density and the escape rate are derived. In Section 3 our 
new perturbation-like method is introduced which allows the determination 
of the quasi-invariant density close to the crisis and in the presence of weak 
noise from the invariant density at the crisis in the absence of noise. Below 
the crisis, the deterministic map shows periodic windows for z > I, giving 
rise to considerable difficulties for any kind of perturbation theory, in par- 
ticular in the limit of small noise strengths. ~26) With these problems in 
mind, in Appendices A and B a sufficient and necessary condition for the 
validity of our new method is derived; see Eq. (41). In Section 4, the escape 
rate k is determined from the quasi-invariant density, leading to the central 
scaling law (52). Sections 5 and 6 deal with the extension of the results for 
the quasi-invariant density and escape rate to more general maps and 
noises. The final Section 7 contains the summary and discussion. 

2. T H E  M O D E L  

We consider the one-dimensional dynamics of a particle with coor- 
dinate x in discrete time n in the presence of additive Gaussian white noise 

Xn + 1 = f ( X n )  "[- ~n, 

of small noise" strength 

p(r = (2ntr2) -1/2 e -  r (1) 

O~<a~l  (2) 

As exemplified in Fig. 1, the funct ionf(x)  in (1) is assumed to be a single- 
humped map of the real axis which is symmetric about its maximum of 
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Fig. 1. The function f (x )  given by the logistic map (8) for 0~<x~<l and by the linear con- 
tinuations (4) for x ~< 0 and (5) for x >/1 at the parameter value A = 0.05. 

order z > 0 at x = 1/2 and has an unstable fixed point at x = 0. Thus, close 
to the maximum the leading-order behavior is of the form 

f (x)  = 1 + A - b  I x -  :/21: (3) 

with A > - 1, b > 0, and z > 0. We further assume that f ( x )  is continuously 
differentiable with f ' ( x ) r  for all xv~l/2 and linear outside the unit 
interval, 

f (x )  = ux for x < 0 (4) 

f ( x ) = u ( 1 - x )  for x >  1 (5) 

u : = f ' ( 0 )  > 1 (6)  

where the inequality in (6) follows from the fact that x = 0 is an unstable 
fixed point. More general maps will be considered in Section 5. 

For A = 0  the unit interval [0, 1 ] is mapped onto itself by f (x)  and 
there exists a unique invariant density p(x) governing the deterministic 
dynamics (1) with t r=0.  We assume that p(x) is positive, bounded, and 
continuous on the entire unit interval [0, I ] with the possible exceptions 
of arbitrarily small neighborhoods of the boundaries 0 and 1. To the best 
of our knowledge, conditions which guarantee these properties of p(x) have 
not been studied in the literature and it is beyond the scope of the present 
paper to address this problem in detail. However, by closer inspection of 
the theoretical results and the examples in refs. 18 and 27 we are lead to 
the conjecture that a necessary and sufficient condition [in addition to 
those already imposed on f ( x ) ]  is either the absence of stable fixed points 
and periodic orbits o f f ( x )  at A = 0  or (equivalently) that p(x)4:0 within 
an arbitrarily small neighborhood of x =  1/2. In particular, this will be 
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guaranteed if a finite iterate of f(x) is everywhere expanding or if 
[f ' (x)[  -1/2 is a convex function, which means that the Schwarzian 
derivative o f f ( x )  is negative. 

It follows that at A = 0 we are dealing with a boundary crisis as 
defined by Grebogi et alJ ~1 and with fully developed chaos in the sense of 
Gy6rgyi and Sz6pfalusy. (~8) Thus, the parameter A in (3) represents the dis- 
tance from the crisis at fully developed chaos and is always assumed to be 
small in the following, 

- I ~ A , ~ I  (7) 

Note that unless otherwise stated, by 'small parameters' we mean both 
positive and negative A in (7), while 'small noise strengths' refers to non- 
negative tr only; see Eq. (2). 

Strictly speaking, we consider families of maps f(x) smoothly 
parameterized by A. While the exponent z in (3) is required to be fixed, 
other properties of the map f(x) such as b in (3) and u in (6) may still 
depend on the parameter A. However, since we restrict ourselves to small 
A values, the variations of b and u are negligible and hence their 
dependence on A is dropped. 

As mentioned in the introduction, on the unit interval [ 0, 1 ] the map 
f(x) has a strange repeller giving rise to transient chaos above the crisis 
A > 0. Below the crisis one either has permanent chaos on a strange attrac- 
tor or, inside a periodic window, an asymptotically regular dynamics on a 
stable periodic orbit. However, one can show that the latter case of a 
periodic window is excluded for z ~< 1 and sufficiently small A by exploiting 
our assumptions regarding f(x). 

As a well-known example we mention the logistic map 

f(x) =4(1 +,g) x(1 - x )  (8) 

with linear continuation (4)-(6) outside [0, 1 ]; see Fig. 1. Thus we have 

z = 2 ,  b = u = 4 ( 1  +zl) (9) 

A further exaaBple is the tent map 

with 

f(x) =(1 +,4)(1 - 2  i x -  1/2[) (lO) 

z = l ,  b = u = 2 ( l + A )  (11) 
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From the noisy dynamics (1) one finds for the transition probability 
P(xly) of a particle to get in one time step from y to x that 

P(xl y) = f~: ~(x - f ( y )  - ~) P(~) d~ = (2ha 2) -1/2 e-Ex-fu')]2/2~ (12) 
- -  o 0  

The probability densities W.(x) to be at x after n time steps follow from 

f 
o ~  

W,,+l(x)= -o~ P(xl y) W,,(y) dy (13) 

As mentioned in the introduction, the system is expected to evolve toward 
a unique quasistationary state for large times n independent of the initial 
density Wo(x). 13'4) In particular, successive densities W,,(x), W,,+ ,(x) will 
not approach exact equality for large times n, but at least they become 
proportional to each other with a proportionality constant that must be n 
independent according to (13): 

Wn+](x)=(1-k) W,,(x) (14) 

Evidently, the quantity k plays the role of a decay rate. 2 
From (13) and (14) we can infer by integration that 

k _J'o[ W , , ( x ) - ~  P(x[ y) W,,(y) dy] dx (15) 
I'o w,,(x) dx 

for arbitrary t > 0 .  For t = l  the right-hand side of (15) represents the 
relative decrease of the population in [0, 1] after one time step. Thus k 
also has the meaning of an escape rate out of the unit interval in the 
quasistationary state. Similarly, choosing t = ~ ,  one can identify k in (15) 
as the escape rate from R+ to R_ .  Henceforth, we will always use (15) 
with t = oo for the determination of the rate. 

It is rather obvious and will be confirmed later by explicit results that 
for small noise strengths a and parameters A also the rate k becomes small. 
Since the right-hand side of (15) with t =  ~ is given by the difference of 
two quantities of order one, it might seem that the densities W,(x) have to 
be known with extremely high accuracy in order to calculate the rate. 
However, three different arguments can be given which show that this is 

2 Strictly speaking, for a nonvanishing rate k, Eq. (14) cannot be rigorously true on the whole 
real axis, as follows, for instance, by comparison of (13) and (14) integrated over x. 
However, closer inspection shows that for any fixed xo ~ R, Eq. (14) becomes asymptotically 
exact for large times n on the whole domain x >/x0. It is only in this sense that we actually 
will make use of (14). 
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actually not the case, basically thanks to the integration over x in (15): 
First, one expects that the escape rate out of R+ approaches its asymptotic 
value k even if the quasistationary state is only approximately reached, i.e., 
(14) is only fulfilled approximately. Second, since the decrease of the 
population of R+ after one time step is equal to the increase of population 
of R _ ,  we can rewrite (15) as 

0 k = ~ _ ~ [ ~ _ ~  P(xl y) W,(y) dy-  W,,(x)] dx 
(16) 

I~ w,,(x) dx 

For an initial distribution Wo(x) which is concentrated in the unit interval, 
the population of R_ will stay small even for rather large times n such that 
the quasistationary state is reached in good approximation. For such 
values of n, the rate in (16) becomes the difference of two small quantities 
and thus is supposed to be not too sensitive against small changes of 
W,,(x). Third, by some straightforward manipulations, the rate (16) can be 
rewritten in the form c2s'29~ 

0 . oO k=S+--J =[I_~_ d.x lo dy - I~  dxI~ dy] P(xly) W,,(y) (17) 
N+ Ig W,,(x) dx 

where N+ is the population of R+,  while J+ can be interpreted as a flux 
of particles escaping from R+ to R_ and J_  as a flux of particles returning 
from R to R+. It is suggestive and can be confirmed by exploiting results 
later in this paper that the net flux J+ - J _  in (17) is not a small quantity 
in comparison with the partial fluxes J§ and J_  but rather is of the same 
order of magnitude. Thus the accuracy of the rate k in (17) is actually com- 
parable to the accuracy of W,,(x) and consequently the same carries over 
to the equivalent rate formula (15) with t = oo. 

In summary, the problem to be solved in the next sections can be 
formulated as follows: In the quasistationary state characterized by (14), 
the densities W,,(x) become proportional to a quasi-invariant density, 
W,,(x) oc W(x). With (13) and (14) we find that 

( l - k )  W(x)= P(xly) W(y)dy (18) 
--Ct2 

and similarly to (15) this leads to the rate 

k = I ~ [  W(x)-I~_~ P(xl y) W(y) at),] dx (19) 
I~ W(x) dx 

As seen in the preceding paragraph, in order to calculate the rate k it is suf- 
ficient that (14) and hence (18) is fulfilled in good approximation. Since the 

822/82/5-6-17 
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rate k in (18) is a small quantity, it thus suffices to find an approximate 
solution of the master equation 

W(x)= P(xly) W(y)dy (20) 

instead of the exact quasi-invariant density in (18). In the next section such 
an approximate solution of (20) will be derived and in Section 4 the result- 
ing rate (19) will be discussed. It turns out that our solution for W(x) 
fulfills (20) in arbitrarily good approximation and the rate (19) becomes 
arbitrarily small for sufficiently small noise strengths a and parameters A. 
Consequently, also the full equation (18) for the quasi-invariant density is 
strictly fulfilled and the rate (19) becomes exact for asymptotically small a 
and A. Furthermore, it follows that our solution W(x) asymptotically 
approaches the unique exact quasi-invariant density. We thus can omit any 
question concerning the uniqueness of W(x) in the next section. 

3. THE Q U A S I - I N V A R I A N T  DENSITY 

In this section an approximate solution W(x) of the master equation 
(20) for small noise strengths tr and parameters zJ is constructed. This will 
be done in three steps: In the next subsection we determine the quasi- 
invariant density W(x) in the domain x~> 1 - e ,  where e is chosen much 
larger than a and ldl but sufficiently small such that the linearizations (4) 
and (5) can be used for all x<<,e and x>~l-e, respectively. Then, in 
Sections 3.2 and 3.3 the quasi-invariant density W(x) is determined in the 
domains x ~< e and e ~< x ~< 1 - e, respectively. 

3.1. Solution for x ~ > l - ~  

For x >1 1 - e ,  the transition probability P(xly) in (12) is negligible for 
y values outside a small neighborhood [ 1/2 - 6, 1/2 + 6] of the maximum 
o f f ( y )  at y = 1/2; see also Fig. 1. Similar to e, the quantity 6 must be much 
larger than a ~/: and IA[ '/=, but can still be chosen sufficiently small such 
that for y~  [ 1 / 2 - 6 ,  1/2 + 6 ]  the approximation (3) for f(y) can be used 
in the transition probability (12). Next we make two assumptions regard- 
ing the quasi-invariant density W(x) which can be shown to be consistent 
with the results for W(x) found later in this section (although for the first 
of them this will not be worked out explicitly). First, we assume that 
P(x[y) multiplied by W(y) is still negligible for x>~l-e and y outside 
[ 1 / 2 - 6 ,  1 /2+6] .  Second, we assume that W(y) is sufficiently smooth on 
[ 1 / 2 - 6 ,  1 /2+6]  such that it can be approximated by W(1/2). [For  
instance, this assumption is obviously valid for all examples of W(x) 
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plotted in Fig. 3 except for (e) and (g). A rigorous justification will be given 
at the end of Section 3.3.] Then, for x~> 1 - e  the master equation (20) 
takes the form 

W(x)=W(~)~,exp{_[x--l--A+blyl:]z)2a 2 (2ha 2dy)'/2 (21, 

Next we note that our assumptions so far on the quantities e and 6 still 
allow a choice such that f(1/2++_6)"l+A-b161:<l-e. Then, the 
integrand in (21) takes its maximum in the interior of the integration 
domain [ - 6 ,  6] for any x~> 1 - e .  Thus, for sufficiently small a and LI the 
integration can be extended over the whole real axis, yielding 

W(l+x,=2W(~) ioeXp{_[x--A~by:]2  J ( 2na2,dy ,/2 (22, 

for x~> - e .  
For the further discussion we rewrite (22) as 

W(1/2) __.,/~ H(I  + A--x~ 
' '  .j (23/ 

H(v) := I /  y('-= /--e - "-~ dy F(1/z) _,;,~ = 2---~-.. e --t)_l/_.(--v/'2v) (24) 

where D,,(x) is the parabolic cylinder function (see, e.g., Eq. 3.462 in 
ref. 30). The function H(v) is plotted in Fig. 2 for different values of z. 
From (24) one finds by closer inspection that H(v) is strictly monotonically 
increasing on the whole real axis for z ~< 1. In particular, one has 
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Fig. 2. The function H(v) defined in (24) for different values ofz. 
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H(v) = (x/~/2) erfc( - v) for _=, 1. For z > 1 the function H(v) has a unique 
maximum at 

Vm,x=O(1/z) with maxH(v)=H(vm,x)=O(z) (25) 
P 

and tends to 0 for asymptotically large positive and negative v like 

H(v)=~'nv ~l-:~/-- for v>> 1 (26) 

H(v)=F (2 Ivl) 1/= for v,~ - 1  (27) 

7 

6 

5 

X 4 

1 

(a) 
4 

3 

I } (b) 

I 

-0.1 -0.1 0.1 0.3 0.5 0.7 0.9 1 .I 0.1 0.3 0.5 0.7 0.9 I .I 
X X 

_ S  

Fig. 3. The solid lines show invariant densities W(x) from numerical simulations of the 
Langevin equation (1) for the logistic map (8) with linear continuation (4), (5) outside the 
unit interval. The roughness of the lines is due to the finite number of realizations. The noise 
strengths are tr = 0 in (a), (c), (e), and (g) and o" = 0.0003 otherwise. The parameter values are 
A = 0 in (a) and (b) corresponding to the boundary crisis of the map at fully developed chaos, 
d=0 .002  in (c) and (d) corresponding to transient chaos, A =0.002 in (e) and (f) corre- 
sponding to permanent chaos, and z1=0.00243 in (g) and (h) corresponding to a periodic 
window of period 5. Thus the solid line represents the 'true' invariant density in (a), (e), and 
(g) and the quasi-invariant density otherwise. Note that in the plots with a = 0 all the peaks 
should actually be of infinite height. In contrast, for nonvanishing noise strength a the peaks 
are of  finite height, but for better visibility those near x = I are not shown in full height 
in the plots. The dashed lines are the theoretical invariant density for a = A = 0, given by 
p(x) = { rt[x( 1 - x ) ]  i/2} - i  for 0 ~< x ~< 1, [see (43) and (45)] and p(x) = 0 otherwise. For con- 
venience, W(x) is normalized on the unit interval and not according to W(1/2)=p( l /2 )  as 
suggested from the discussion in Section 3. Thus, in (a) the (hardly visible) dashed line is a 
check of the numerical simulations. In the other plots the dashed lines confirm the theoretical 
prediction that p(x) = W(x) for ~ ~< x ~< 1 - e  [see (47)] provided the condition (41) is fulfilled. 
In particular, (41) is evidently violated in (e) and (g) and is reasonably but not extremely well 
fulfilled in (f) and (h), since we have o "l-" - n/~ = 8.7 l lAI and r ~:- t~/= _ 7.1 IAI, respectively. This 
explains the deviations from p ( x ) =  W(x) for e<~x<~l - e  in (f) and (h), while the deviations 
in (b)-(d) are due to the finiteness of tr and A. A similar discussion applies to the theoretical 
predictions (28), (42), and possible deviations thereof. Finally, for A # 0 also the predicted mul- 
tipeak structure (33), (36) of W(x) in the regime x<~e is confirmed by (c), (d), (f), and (h). 
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The same asymptotic expressions (26), (27) are actually valid also for 
z~<l. Consequently, the quasi-invariant density W(x) in (23) has a 
maximum proportional to lie ~=-l)/'- at x =  1 +A- -O(o /z )  for z > l  and is 
strictly monotonically decreasing for z ~< 1. For any z, an exponential 
decay is approached for x - ( 1  + A),> a and a behavior proportional to 
( l + A - - x )  (1-~)/: for l + A - - x > a .  In the latter expression, A becomes 
negligible for 1 - x >  left, implying 

W(x)=B[1 - x ]  I'-:)/-- for e~> 1 - x >  IAI + a  (28) 

2W(1/2) 
B : =  zbW: (29) 

See Fig. 3. 

3.2. Solut ion for x~<e 

In the case that x~<e the transition probability P(x[y) in (12) is 
negligible for e<~y~ 1 - e ;  cf. Fig. 1. For y~e  and y~> I - e  the m a p f ( y )  
in the transition probability (12) can be approximated by (4) and (5), 
respectively. As before, we make two assumptions regarding W(x) which 
can be shown to be consistent with the results found later in this section. 
First, we assume that in the master equation (20) P(xly) multiplied by 
W(y) is still negligible for x<~e and e~<y~< 1 - e ,  yielding 

{ tx--"-:l:l .y f" W(x)= W(y) exp 0_~ 2~- J (2=32) 1/2 

{ ["+m']2~'2~ J (2,~o;)'/;4' +a_ ,  f W(I + y )  exp (30) 

The exponential term in the first integral has a very pronounced maximum 
at y=x/u <e. Thus, apart from the factor W(y), the integration domain 
could be extended over the whole real axis. Our second assumption is that 
this is in fact possible even if the factor W(y) is included. After introducing 
(22) in the second integral in (30), one easily sees that again the integration 
can be extended over the whole real axis. We thus arrive at the following 
inhomogeneous integral equation for IV(x): 

IV(x) = ~ IV(y)exp { [x 7___._uuy] 2"~ dy + w,(x) (31) 
_~ 2tr- J (2~z32) '/= 

w , ( x ) : = 2 W ( ~ ) I  ~_~f:~dydvexp~ f -  [x+uy]2+2a,_[Y-A+bv:] '-} (32) 
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Note that this integral equation leads to a solution W(x) on the whole real 
axis which, however, represents the quasi-invariant density only for x ~< e. 
Similarly, the quantity W(1/2) in (32) is the quasi-invariant density and 
not the solution of (31) at x =  1/2. 

The integral equation (31) is an inhomogeneous Fredholm equation 
with a compact integral operator. Although the inhomogeneity Wl(X) is 
unbounded for z < 1, this structure of (31) as well as the multipeak shape 
of W(x) near x = 0 in Figs. 3c, 3d, 3f, and 3h suggest that we try an ansatz 
for W(x) in the form of an infinite sum 

W(x)= lim ~ wi(x) (33) 

where the w,.(x) are defined by the recursion relation 

I x -  uy]2"~ dy 
W i + I ( X )  (34) 

o~ [x + A ~by-']2"~ dy 
Wo(X) : = 2 I ' V ( 1 ) ;  I exp {-- ~ j(2mr2),/z (35) 

Note that this recursion relation correctly reproduces WI(.~." ) in (32). From 
(34) and (35) one finds by a straightforward calculation that 

2 W(1/2)(aU,),,___,/:H(X+zdA'~ 
w,(x) = V,,~zb,/:u ̀ . \ ~ j  (36) 

"~ _ 9  i / I,l---U -x~ 1/2 
) 137/ 

where H(v) is defined in (24). For x~<e, Eq. (31) is equivalent to the 
master equation (20). With (33) and (34) this implies that for x~<e 

W(x) - P(x[ y) W(y) dy = - lim w,,,(x) (38) 

Exploiting (36) and the properties (25)-(27) of H(v), it can be shown (see 
also the next paragraph) that for x~<e the sum in (33) is bounded and the 
right-hand side of (38) vanishes. Thus the ansatz (33) together with (36) 
indeed is a sohation of our problem for x ~< e. 

The properties of wi(x) in (36) are very similar to those of W(x) 
discussed in the last paragraph of Section 3.1: One finds an exponential 
decay for large negative x values, while 

Wi(x)=Bu-i/Z[X"[-LliA] (l-z)/z for X"[-uiA>~atliU i (39) 



1480 Reimann 

where B is defined in (29). For z~< 1 the functions wi(x) are strictly 
monotonically increasing, while for z >  1 there is a maximum at 
x =  ui[ - , J  + O(aU~/z)]. Close to this maximum one has 

IVi(X ) "~ ~l]i(--lgiz~) = C u - i ( a u i )  (I ---)/g for Ix + u~AI <~ O(au~U~) (40) 

where C: =2W(I/2)F(I  +l/2z)/(x/~bl/:). The resulting behavior of the 
quasi-invariant density (33) for x ~<e is in agreement with the numerical 
examples of Fig. 3. Without going into further details we mention that for 
A , ~ - a  our solution W(x) for x<~e fits into the generic structure 
of invariant densities near an unstable fixed point as found in refs. 29, 31, 
and 32. 

In the Appendix A it is shown that for sufficiently small a and A and 
under the additional condition that 

3>> - a  c'--~l/: or z~< 1 (41) 

the quasi-invariant density (33) takes the form 

B 
W(x) = ~ x ~l --'v-" (42) 

for x~[e/u ,e] .  The basic idea underlying the derivation of (41) in 
Appendix A is to find an integer N~> 1 such that the contributions of wi(x) 
to the infinite sum (33) can be neglected for i~> N. Moreover, Eq. (39) has 
to be valid for all i < N and the quantity ui/A on the right-hand side has 
to be negligible in comparison with x for all x~[e/u ,e] .  Then, one 
immediately finds the result (42). Condition (41) represents a sufficient 
condition that such an integer N exists. In other words, the condition (41) 
says that for z > 1 and a fixed negative parameter A, the noise strength a 
cannot be chosen arbitrarily small, whereas for A/> 0 or for z~< 1 and 
arbitrary A the choice of a is not restricted. Again speaking differently, con- 
dition (41) means that for z > 1 and a fixed noise strength cr the admitted 
parameter values A are limited from below. 

While in Appendix A it is shown that (41) is a sufficient condition for 
(42), in Appendix B examples are given where (42) is definitely wrong 
in the regime A ~ - a  ~-~v:. These examples consist of maps f ( x )  with 
arbitrary z >  I at parameter values A < 0  which belong to periodic 
windows but can be arbitrarily close to zero. We conjecture that for these 
examples and parameters which fulfill neither A ,~ -- a t : -  ,7/-- nor 
A ~> --a ~-~/:, Eq. (42) represents something in between a rather bad and 
a reasonably good approximation, but becomes really satisfactory only if 
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(41) is fulfilled. This is confirmed by the numerical example shown in 
Fig. 3(h). In other words, (41) is also a necessary condition for (42) to hold 
at least for a set of A values accumulating at A = 0. Since the examples of 
Appendix B are not exotic constructions but typically occur for the class of 
maps f(x) introduced at the beginning of Section 2, the condition (41) 
cannot be substantially relaxed without severely restricting the admitted 
maps f(x). Even more, the numerical examples shown in Fig. 3e and 3f 
suggest that (41) is a necessary condition for (42) also for those A values 
not covered by the examples of Appendix B [including small, negative A 
for which f(x) exhibits a strange attractor].  

In summary, (41) is a sufficient and presumably also necessary condi- 
tion for (42) to hold. Loosely speaking, it guarantees that at least in the 
domain I-e, 1 - e ]  the singularities of the noise-free invariant density that 
occur both inside the periodic windows and for chaotic attractors when 
z > 1 and A < 0 are sufficiently 'washed out' by the noise; see Figs. 3e-h. 
Apparently, the fact that for z ~< 1 the values of a and A are not restricted 
by (41) is somehow related to the absence of periodic windows, as men- 
tioned below Eq. (7). 

3.3.  S o l u t i o n  for  ~ < ~ x ~ < l - ~  

In this section the quasi-invariant density W(x) is determined in the 
domain e~<x~< 1 - e  under the assumption that (42) holds. Thus, from 
now on we always restrict ourselves to values of a and A fulfilling (41). 
Let us first consider the special case that a = A = 0. Then it is impossible 
for a particle with dynamics (1) to escapes from 1,0,1 ]; see Fig. 1. Hence 
W~=,=o(0) is not a quasi-invariant, but a 'true' invariant density, i.e., a 
rigorous solution of the master equation (20), and actually coincides with 
p(x) as introduced at the beginning of Section 2, 

p(x)=W~=~=o(X) (43) 

Since lim~_ oP(xly) = ~ ( x - f ( y ) )  according to (12), the master equation 
for p(x) (20) goes over into the Frobenius-Perron equation 

p(x)= ~ P(Y) (44) 
Jo, l =.,-If'(Y)l 

We recall that p(x) was required in Section 2 to be positive, bounded, 
and continuous for e ~< x ~< 1 - e .  Further, it can be shown that the results 
for W(x) in the domains x~> 1 - e  and x~<e as found in Sections 3.1 and 
3.2, respectively, stay valid for a =  A = 0. Consequently, p(x) is given by 
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(28) for 1 -e<<,x<~ I and vanishes for x >  1. Equat ion (39) implies that  
(42) is valid for p(x) not only within [e/u, e], but on the whole domain  
O<~x<~e, while for x < 0  one has again p ( x ) = 0 .  F rom (28) and (42) we 
recover the well-known result (~8~ that  p(x) has singularities of  order 
( 1 - z)/z at x = 0 and x = 1 and that  a necessary condition for p(x) to share 
the symmetry  o f f ( x ) ,  i.e., p(1/2 + x) = p(1 /2-  x), is f ' ( 0 ) = 2 - ' .  Thus the 
latter situation, called double symmetry,  is nongeneric. In passing we 
note that by compar ing  our  results for W(x) near  x = 0 and x = 1 or for 
x ~  Go and x - - * -  oo, we can completely exclude double symmetry  
W(1/2 + x ) =  W ( 1 / 2 - x )  whenever ,d r  or A r  respectively; see also 
Fig. 3. For  our examples of the logistic map  (8) and the tent map  (10) the 
invariant densities p(x) on the unit interval are given by (27~ 

see (Fig. 3a), and 

1 1 
p(x) = rt [x( 1 -- x ) ]  1/2 (45) 

p(x) = I (46) 

respectively. Thus both examples represent the nongeneric case of  double 
symmetry.  

Next we will show that  the quasi-invariant density W(x) is given in 
arbitrarily good approximat ion  by 

W(x) = p ( x )  for e<~x<~ 1 - e  (47) 

provided a and A are sufficiently small and (41) is fulfilled; see Fig. 3. Thus 
W(x) will be determined on the whole real axis insofar as p(x) is con- 
sidered to be known. In order to verify (47) we will show that this ansatz 
(47) provides a solution of the master  equat ion (20) up to an arbitrari ly 
small error. By closer inspection it can be shown that given (47) and (41), 
one recovers the same results for W(x) in the domains  x >/1 - e  and x ~< e 
as found in Sections, 3.1 and 3.2, respectively, except that  W(1/2) has to be 
replaced by p(1/2) everywhere. Then, by compar ing  the properties of  p(x) 
discussed in the preceding paragraph  with (28) and (42), one can infer that  
(47) actually holds at least for e/u<~x<~l-e/u. From Eq. (47) and the 
behavior  of  p(x) on [e, 1 - e ]  together with the results for W(x) in the 
domains  x >/1 - e  and x ~< e it follows that  the master  equation (20) can be 
evaluated in saddle point  approximat ion  for e ~< x <~ 1 -  e and sufficiently 
small a, giving 

W(y) 
W(x)- -  ~ I f ' ( y ) l  (48) 

f (  ' ) = X  
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Since the J dependence o f f ( y )  is negligible for sufficiently small J and 
e/u<~f(y)<~l-a/u for all e<~y<~l-e  (see Fig. 1), Eq. (44) shows that 
W(x) in (47) solves (48) and thus the master equation (20) for 
e<~x<~ l -a .  �9 

4. T H E  E S C A P E  R A T E  

By exploiting probability conservation ~ _ ~ P ( x i y ) d x =  1 as implied 
by (12), we can rewrite the rate (19) in the form [see also Eq. (16)] 

fo [ f~  P(x ly )  W ( y ) d y - W ( x ) ] d x  
k =.a - ~  J - ~  

~ W(x) ax 
(49) 

From the results of the preceding section it readily follows that the 
denominator in (49) asymptotically equals I~  p ( x ) d x =  1 for small noise 
strengths r and parameters A. By means of (38) this yields for the rate (49) 
that 

0 

k =  lim ~ w,,,(x) dx (50) 

and hence with (24), (36), and (47) that 

k =  2p(1/2) lim (aU"fl---II: 
V/-~zb l/= ,,,- ~. u"' 

xI_~_ d x ~  dyyi '-:V'-exp - 3' au"'U,,,J J (51) 

By performing the x integration and then a partial integration over y one 
finally arrives at 

/l'~fu~. "~'/:F 

F(x) :=2n -I/2 yl/~e-I:'-X~2dy (53) 

where U~ = [2u2/(u 2 -  1 )] 1/2 according to (37). This is the central result of  
our paper, becoming asymptotically exact for small noise strengths a and 
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parameters  A and under  the necessary 3 and sufficient condi t ion  (41). While  
the invariant  densi ty at the max imum p(1/2) is global ly dependent  on the 
m a p f ( x ) ,  the other  proper t ies  z, zl, b and U~ of  the m a p  entering the rate 
are local ones. Let us also recall that  b and Uoo can be considered to be A 
independent  as discussed in the pa rag raph  below Eq. (7), while p(1/2)  and 
z are A independent  by definition. Thus, the rate (52), as a function of  tr 
and A, has the form of  a scaling law (4' ~') with both universal  crit ical 
exponents  and a universal scaling function F(x) for any fixed z. As in the 
theory of  critical phenomena,  f33) the specific properties of the map f(x)  (at 
A = 0 )  enter the scaling law (52) only through the nonuniversal scaling 
amplitudes p ( 1 / 2 ) ( U ~ / b )  1/~ and 1/ U~ within any universality class defined 
by a fixed z. 

The scaling function F(x) in (53) is closely related to H(v) in (24) and 
can equal ly well be expressed by a complementa ry  error  function (by 
means  of  a par t ia l  integrat ion)  or  a parabol ic  cyl inder function: (3~ 

coo 
F(x)  = J 0  e r f c ( S  --x) dy 

= [2(=-  i)/:/n] l/z F( 1 + 1/z) e-"'-/ZD -el +: ) / : ( - - x /~x )  (54) 

Similarly to the discussion of  H(v) below Eq. (24), one finds that  F(x) is 
monotonica l ly  increasing for all z > 0 and that  

F(1 + 1/z) e-"" 
F(x)- V/_~2,/. ixl,+l . for x ~ - I  (55) 

F(O)=rr - ' / ' -F( I+~)  (56) 

F(x)=2x w: for x ,>  1 (57) 

3 For the derivation of the escape rate (52) not the full property (47), for which (41) is a 
(presumably) necessary condition, but basically only Ig" W(x)dx = ~ p(x)dx in (49) and 

P(xly) W(yIdy=r P(xly)dy 
I / 2 - -  (~ I/2--r 

for x >/I --e [see (21)] is needed [the other assumptions regarding W(x) mentioned in the 
first paragraphs of Sections 3.1 and 3.2 are actually very mild and can be shown to hold even 
when (41) is violated]. However, we expect 141) to be still a necessary condition for the 
validity of these two properties of W(x) and hence of the rate formula (52) at least for 
'typical' small tr and A, even though for certain 'atypical' a and A these two properties and 
hence (52) might also hold 'by coincidence' even when (41) is violated. 
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Thus ,  for A < 0  and  sufficiently smal l  a [ b u t  still respec t ing  (41) ]  the  
a sympto t i c s  (55) yields an  Ar rhen ius  law for the  ra te  (52) as was to be 

expected.  The exponentially leading Arrhenius factor e x p { - ( A / a U o ~ ) ' - }  in 
this ra te  has  been  der ived  p rev ious ly  by Beale. c81 O n  the  o the r  hand ,  

for A > 0  the  a sympto t i c s  (57) leads to  the  obv ious ly  cor rec t  result  
k = p(1/2)(A/b) ~/= for the  ra te  (52) in the de te rmin is t ic  l imit  a--* 0. ~9~ 

The  theore t i ca l  ra te  (52) for the  logist ic  m a p  (8) and  the  tent  m a p  (10) 
is c o m p a r e d  wi th  resul ts  f rom numer i ca l  s imula t ions  in Tab les  I and  II,  

respectively.  F o r  sufficiently smal l  a and  A the  a g r e e m e n t  is excellent .  T h e  

same ra te  fo rmula  (52) except  tha t  the  q u a n t i t y  Uo~ is eve rywhere  rep laced  

by x / ~  has  been  der ived  in ref. 3 [see  Eq. (4.4) the re in ] .  In  o the r  words ,  
this result  f rom ref. 3 is i n d e p e n d e n t  o f  u and  since U ~  = [2u2/(u "--  1 )] 1/2, 

we see tha t  it agrees  wi th  ours,  (52), on ly  in the  l imit  u ---, oo, i.e., for  m a p s  

f ( x )  wi th  a superuns tab le  fixed po in t  o r  a d i scon t inu i ty  at x = 0 and sym- 
met r ica l ly  at x = 1. F o r  finite u, the  numer i ca l  results  of  Tab les  I and  II  

c lear ly  favor  ou r  f o rmu la  (52). Essent ia l ly  the same res t r ic t ion  to u---oo 

appl ies  to the results  de r ived  in refs. 4, 9, 11, and 34 as discussed in m o r e  
deta i l  in refs. 20-22.  

Table I. Comparison of the Theoretical Escape Rate kth in (52) with Results 
k . .  m from Numerical Simulations of the Langevin Equation (1) for the Logistic 

Map (8) with Linear Continuation (4), (5) Outside the Unit Interval" 

A/a a = 10 -2 a =  10 -3 a = 10 -4 O" = 10 -5 a = 1 0  - 6  

2 1.176x 10 -I 3.096 x 10 -2 9.114x 10 -s 2.775 x 10 -3 8.615 x 10 -4 
27(27) 12(12) 5.5(5.3) 1.8(1.6) 0.0(-0.3) 

0 3.151 x 10 -2 8.959 x 10 -3 2.702 x 10 -3 8.486 X 1 0  - 4  2.682 x 10 -4 
16 (17) 6.1 (7.6) 1.6 (3.1) 0.9 (2.5) 0.8 (2.4) 

- 2  1.212 x 10 -3 3,239 x 10 -4 9.605 x 10 -5 3.037 x 10 -5 9.424 x 10 -6 
20 (34) 7.4 (22) 1.4 (17) 1.4 (17) -0.5 (16) 

"The first of each pair is the numerical rate k.u,. for different noise strengths a and 
parameters zl fulfilling the condition (41). The numbers below k n u  m a:re the relative difference 
in percent, lO0(knum-kth)/knum, between theoretical and numerical rates. The theoretical 
rate (52) is completely fixed by (9), (45), and (53). The statistical uncertainty of the numeri- 
cal rate due to the finite number of realizations is about 1%. Within this accuracy, the agree- 
ment between nugterics and theory is perfect for sufficiently small A and a. The numbers in 
parentheses represent the same relative difference in percent but with U~, in the rate formula 
(52) replaced by v / ]  according to the result for kth derived in ref. 3 [see Eq. (4.4) therein]. 
The agreement with the numerical simulations is considerably worse, in particular for 
large negative A, which can be understood by the fact that even the exponentially 
leading Arrhenius factor in the theoretical rate t3~ is not correct; see the discussion below 
Eq. (57). 
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Table II. Same as Table I, but for the Tent Map (10) 

zl/a a = l O  -I a=3.16x 10 -2 a = l O  -2 ~r=3.16x I0 -3 0 " = 1 0  - 3  

2 1.959 x 10 -t 6.431 x 10 -2 2.007 x 10 -2 6.397 x 10 -3 2.015 x 10 -3 
14 (15) 6.7 (7.1) 1.4 (1.9) 0.8 (I.3) 0.0 (0.5) 

0 5.441 x 10 -2 1.547 x 10 -2 4.793 x 10 -3 1.445 x 10 -3 4.676 x 10 -4 
15 (27) 5.8 (18) 3.9 (17) --0.8 (13) 1.5 (15) 

--2 6.869 x 10-3 9.404 • 10 - 4  2.279 x 10-4 6.652 x 10 -5 2.001 x 10 -5 
41 (85) 21 (70) 9.3 (62) 5.5 (59) 1.9 (57) 

In the r e m a i n d e r  o f  this sect ion we cons ide r  the  b e h a v i o r  o f  the ra te  

for a fixed p a r a m e t e r  A > 0 as a funct ion  o f  the noise  s t rength  a. T o  this 

end we rewri te  the scal ing law (52) as 

k =  p (!~{'l~l~:/= G (Uoo ~) {SS) \2 / \  b / \ 

F a(x) : = 2 n  -1/2 e -:~" [1 +xyll/=dy (59) 
- -  l / x  

Closer  inspec t ion  ~z2) shows  tha t  for z ~< 1 the scal ing func t ion  G(x) in (59) 

is strictly m o n o t o n i c a l l y  increas ing  wi th  x, while  for z > 1 it has  a local  

m i n i m u m  at x m i , ( z ) > 0 ;  see also Fig. 4. The  m i n i m u m  Xmi,(Z) is str ict ly 
m o n o t o n i c a l l y  increas ing  wi th  z and  obeys  Xmi.(Z J, 1) = 0 and  Xmi.(Z) OC Z 

for large z. Fur the r ,  one  finds tha t  G(x f 0 ) =  2 i n d e p e n d e n t  o f  z and  tha t  
G(xmi,(z)) is str ict ly m o n o t o n i c a l l y  decreas ing  f rom 2 for z =  1 t o w a r d  1 

for z --, ~ .  Thus,  for any  z > 1 and A > 0, sufficiently small  noise  s t rengths  
a > 0 will lead to smal le r  rates (58) than  in the absence  o f  noise  a = 0, i.e., 

Fig. 4. 

1.5 ~ /  

1 ' ' ' 1  . . . .  I . . . .  I r ~ m ~ r T r ~ '  I . . . .  I . . . .  I ' ' ~  

0 1 2 3 4 5 6 7 8 

X / Z  

The scaling function G(.v) defined in (59) versus x/z for z=0.5, 1, 1.5, 2, 3, 6, 15, and 
40 (from above). 
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Fig. 5. The escape rate k as a function of the noise strength G for the logistic map (8) with 
linear continuation (4), (5) outside the unit interval. The solid line is the theoretical prediction 
according to (9), (45), and (58). The symbols are results from numerical simulations of 
the Langevin equation (1) at parameter values zl = 10 -5 (circles), A = 10 -6 (crosses), and 

= 10 -7 (triangles). The statistical error is about 1%. As seen in Table I, the agreement 
between theory and simulations is excellent, and, in particular, the predicted noise-induced 
stabilization of deterministic transient chaos is confirmed by the numerical results. Only for 
A = 10 - s  are the numerical results systematically slightly above the theoretical line, which 
clearly is a finite-A and a effect. 

the noise induces a stabilization of  deterministic transient chaos; see Fig. 5. 
The strongest relative reduction G(xmi.(z))/2 of the rate only depends on 
z but not on A and takes the extremal value 1/2 for z--> oo, while for z ~< 1 
no reduction occurs. The stabilization of deterministic transient chaos by 
noise has been observed in a numerical study by Franaszek/1~ A simple 
intuitive explanation of this effect is possible only in the limit u--* ~ ,  as 
discussed in more detail in refs. 20 and 22. 

5. MORE GENERAL MAPS AND MULTIPLICATIVE NOISE 

We consider a generalization of the Langevin equation (1) with multi- 
plicative noise 

x,,+ l =f(x,,)  + g(x,) ~,, (60) 

The map f ( x )  is of the same kind as those introduced in Section 2 except 
that it must no longer be symmetric about x = 1/2. In particular, we still 
assume that f(1 ) =  0 without loss of generality. Accordingly, the quantity 
1/2 in (3) has to be replaced by a general maximum x * e  (0, 1) o f f (x )  and 
u in (4) and (5) by f ' ( 0 ) > l  and - f ' ( 1 ) > 0 ,  respectively. The noise- 
coupling function g(x) in (60) is required to be nonvanishing at least at one 
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of the points x = 0, x = x*, or x = 1 and to be continuous and bounded on 
the whole real axis. For convenience, we also assume for the moment that 
g(x) = g(0) for x ~< 0 and g(x) = g(1) for x >1 1. The resulting generalizations 
for the quasi-invariant density W(x) in Section 3 are straightforward and 
not elaborated in further detail here. As in Section 4, one then arrives at 
the escape rate 

k=p(x*>(-~a)li:F(-~-~) (61) 

for small a and A obeying (41), where the scaling function F(x) is given in 
(53) and 

I ~ ] } I/"> 
O : = ( 2 [ g ( x * ) 2 + ~ +  , 1 g(O)2 (62) 

. / (  )_ f (  ) 2 ( f , ( 0 ) 2 _ l ) j  

Clearly, for maps f (x )  which are symmetric about x =  1/2 and additive 
noise g(x) - 1 the rate formula (52) is recovered. Again, for any fixed order 
of the maximum z, both the critical exponents and the scaling function 
F(x) in (61) are universal and the specific properties of the map f (x)  and 
the noise-coupling function g(x) only enter into the scaling amplitudes 
p(x*)(O/b) ~/-- and 1/0. Thus, the further discussion of the rate (61) can be 
immediately taken over from Section 4. 

The result (61) for the escape rate stays valid if the assumptions that 
f (x)  is linear and g(x) is constant outside the unit interval are given up. 
Essentially, this follows from the fact that within a small neighborhood of 
the unit interval, say [ - e ,  l + e ] ,  the dynamics (60) stays practically 
unchanged, while outside this neighborhood the probability that a realiza- 
tion returns into the unit interval is negligible anyway. The quasi-invariant 
density W(x) stays unchanged as well, except that the functions wax) in 
the infinite sum (33) can no longer be expressed in a simple closed form as 
in (36) in the domain x~< - e .  

As a further generalization we consider mapsf(x) in (60) with M>~ 1 
local extrema x*, i = 1, 2, ..., M, that are continuously differentiable and 
o b e y f ' ( x )  4:0 for all x 4: x*. Without loss of generality we can assume that 
0<x~ '  < x * <  ... < x * <  1, that x* with odd and even i values are local 
maxima and minima o f f (x ) ,  respectively, and that f ( 0 ) = 0  and f ( 1 ) = 0  
(M odd) or f ( 1 ) =  I ( M  even). Analogous to (3), close to the extrema x* 
the map f (x)  is assumed to behave as 

f ( x ) = l + c i A - b j l x - - x * [  ~' for o d d /  (63) 

f ( x ) = - c i A + b i [ x - x * [  :i for even/  (64) 
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where b, > 0, z, > 0, and c, are arbitrary. Thus, for J = 0 the unit interval is 
mapped onto itself and, similarly as in Section 2, we expect that a 
necessary and sufficient additional condition to guarantee a nicely behaving 
invariant density p(x) is the absence of stable fixed points and periodic 
orbits or (equivalently) p(x)4:0 close to at least one extremum x*. 

For M odd it follows that x = 0 is an unstable fixed point, i f (0)  > 1, 
and f (1)  = 0 , f ' (1)  < 0. The determination of the quasi-invariant density 
W(x) follows the same line of reasoning as in Section 3 and for the escape 
rate one finds that 

(o;),,--, (c, 
k=,=l ~ P(X*)\ b, J F'ko, a} (65) 

where F,(x) is the scaling function in (53) with z=z, and 

o; {2[g,x,,2 g ,,2 g,0,2 1t,,2 �9 = + ~ + f , ( l ) , _ ( f , ( O ) Z  1)J for odd /  (66) 

g(0)2 }1/2 
O,:={2[g(x*)Z+f,(O)2_f I for even/  (67) 

For M even, both x = 0 and x = 1 are unstable fixed points o f f (x )  and 
there exist two partial escape rates k§ and k_  out of the unit interval 
[0,1-I, describing particles which escape to plus and minus infinity, respec- 
tively. Clearly, the total escape rate is k = k+ + k_ .  The partial escape rate 
k_ turns out to be equal to the right-hand side of (65) except that the sum 
runs over even i only and consequently the O, are given by (67). Similarly, 
k+ is equal to the right-hand side of (65) with odd i only and the O, are 
given by (67) but wi thf ' (1 )  and g( 1 ) instead of f ' (0 )  and g(0), respectively. 

Clearly, there are many other possible generalizations, such as discon- 
tinuous functions f(x) and g(x), which, however, are not considered in 
further detail here. 

6. COLORED NOISE 

In generalization of (1) and (2) we consider the two-dimensional 
Langevin equation 

x,, +, =f(x, ,)  +y,, + ~I, 11 (68) 

Y,, + l = Ay,, + ~o-I (69) ~ n  

822/82/5-6-18 



1490 Reimann 

where the map f ( x )  is specified in Section 2 and q,x("l, i = 1, 2, represents 
uncorrelated weak Gaussian noise 

P({I] ~) = (2=a~)- ,/2 exp ( -  ~',[)/20-,:-) 
(70) 

. . . . . . .  = a; 6 o.~ ..... 0 <~ cr i ~ 1 

Restricting ourselves to A values in (69) with 

- I < A < I  (71) 

it follows from (69) and (70) that in the stationary state y,, are Gaussian dis- 
tributed random numbers of vanishing mean and exponentially decreasing 
correlation 

( 1 -  l - A  2 
P(Y")= \ 2~a~_ J exp ( ~ y,, j  (72) 

(Y,,Ym) =At ...... I a~ 1 - - A  2 (73)  

In other words, y,, represents Ornstein-Uhlenbeck noise of correlation time 
[In IA-~I]-l .  In particular, the white-noise limit is given by A ~ 0 .  Note 
that Ornstein-Uhlenbeck noise in discrete time (69) shows a richer 
behavior than in continuous time (see, e.g., contributions in ref. 35), since 
it includes anticorrelated noise in (73) for negative A; see also ref. 36. The 
influence of Ornstein-Uhlenbeck noise on an experimental system near a 
crisis has recently been studied in ref. 16. 

The one-dimensional dynamics (68), in which we are actually inter- 
ested, is simultaneously disturbed by white and colored noise and, in 
particular, is non-Markovian for nonvanishing a2 and A. However, for 
practical purposes it is usually much more convenient to consider the two- 
dimensional Markov process (68), (69) and to eliminate the auxiliary 
variable y only at the very end by integration/36~ Thus, in generalization of 
(20), we will start with the determination of the two-dimensional quasi- 
invariant density W(x ,y )=  W(x~,x2) by constructing an approximate 
solution of the master equation 

7 F W(xl , x2 )= dyl dY,_P(xl,x21yl,y,_) W(yl,Y2) (74) 

Similarly as in (12), the two-dimensional transition probability in (74) is 
found to read 

1 exp j" [x , - - f (y , ) - -yz ] ' -  [x2--Ayz]'-'[ 
P(xl,x, IYl,Y,) 2XO. l 0.2 2a i 2a~ j (75) 
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In a second step, we will use the approximate  quasi-invariant density 
W(x~,x,_) to calculate the escape rate k, which in generalization of (19), 
now is given by 

(Ig dx, ax, [ W(x,, 
k =  \ - I ~ o ~ d y ,  I~_o~dy,_P(x,,x2ly,,y,_) W(y,,y,_)] ) 

J~ dx, j ~  dx2 W(x,, x,) (76) 

The basic ideas to find an approximate  solution of the master  equat ion 
(74) are the same as for the white-noise case in Section 3. However,  the 
detailed arguments  and calculations are considerably more  involved and 
we only give here some main-resul ts ,  valid for sufficiently small noise 
strengths a~ and parameters  zl under the additional condition (41) with 
(O'~+0"~) I/2 instead of a: For  e<~x~ 1 - e  one finds analogously to (47) 
that 

W(x, y) = p(x) ~(y) (77) 

where p(x) and /~(y) are defined in (43) and (72), respectively. For  
x >t 1 - e  Eq. 23 goes over into 

2p(1/2) + o'~,) ] (' -=)/2~ H { 1 + A - x + Ay'~ 
W ( x , Y ) = x / ~ z b l / : P ( Y ) [ 2 ( ~  , , i/~ (78) 

- - \ [ 2 ( 0 "  7 + o-_~)] - . ]  

For  x ~< e the quasi-invariant density W(x, y) can be written as an infinite 
sum similarly to (33) with summands  wi(x, y) which are given by rather 
complicated expressions for general i. Only in the limit of  large i does one 
again arrive at a simple result similar to (36): 

2p(1/2) " ( ' )  S( j .)/__ / x  +Aui \  wi(x,y) ~ u i P  j --"Ht--~7~-- ) ( 7 9 )  

[2u2_lU'- ( a~ u-~+__4Atu)]'"- 
S : =  t r / +  I_A_ ,  - - - -  (80) 

It can be readily seen that  u - 3A + 4A/u > 0 for all u > 1 and - 1 < A < 1. 
Note  that  a~ and a ~ / ( 1 -  A 2) in (80) are equal to the variances ((~,11)25 
and (y~,) of  tl~e noises in the Langevin equat ion (68) according to (70) 
and (73), respectively. 

It is remarkable  that  both  in (77) and (79) we find a factorization into 
functions of  one variable only. However,  the same is not the case in (78) 
nor for the functions wi(x, y) with small i and thus for the sum W(x, y) 
unless A = 0 or a2 = 0. It should also be noted that  for nonvanishing A and 
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tr 2 Eqs. (77)-(79) are valid only for y values close to y = 0, say - g < ~ y  <<, g, 

where g is a small quanti ty similar to e. Although explicit results cannot  be 
given for lYl >g,  in the domain e < ~ x < ~  1 - e  a factorization as in (77) will 
certainly not occur unless A = 0 or a2 = 0. Furthermore,  one can show that 
for sufficiently small tri and z/ the contributions to integrals over y as for 
example in the rate (76) from y values outside [ - L  g] are so small that 
using (77)-(79) on the whole y axis still leads to arbitrarily good 
approximations. 

By construction, the functions w ~ ( x ,  y )  fulfill a two-dimensional ver- 
sion of  (38). Then, the rate (76) can be evaluated by the same line of  
reasoning as in Section 4, leading to the generalized versions of  (52) and 
(58): 

( l ~ ( S ~ ) / = F ( ~  = (1)(A) 1/= (S) 
k=P k,2/\b] kS/ p 2 -b G (81) 

where S is defined in (80). The discussion of  this result is very similar to 
that in Section 4, and in Fig. 6 it is shown that it compares excellently with 
numerical simulations. F rom the definition of  S in (80) and the properties 
of  G ( x )  in (59) it follows that the rate (81), considered as a function of  A, 
may be increasing, decreasing, or exhibit one or  several extrema, depending 
on the values of  /t, tri, and u. The latter case of  a nonmonotonous  
dependence of  the rate on the correlation time of the colored noise has 
recently attracted much attention under the name 'resonant activation'; (38) 
see also ref. 37 and further references therein. 

0.76 . . . . .  ~ .... ~,,. LL,.,,, . . . .  ~ ..... ~ . . . .  , . . . .  { 

0 . 6 8  

�9 - ~  0 . 6 4  ~ j  
0 . 6  

0 . 5 6  . . . .  , . . . .  , . . . .  , . .  , ~ r ~ - ~  ~ . . . .  , . . . .  

0 1 2 3 4 5 6 7 8 

S/A 
Fig. 6. The escape rate k as a function of the quantity S defined in (80) for the logistic map 
(8) in the presence of colored noise (68). The solid line is the theoretical prediction according 
to (9), (45), and (81). The symbols are results from numerical simulations of the Langevin 
equations (68), (69) with a~ = 0. The parameter values are zJ = 10-6 (open symbols), zl = I0-7 
(filled symbols), and A = 0 (circles), A = 0.5 (squares), and A = --0.5 (triangles). 
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7. S U M M A R Y  AND DISCUSSION 

We investigated one-dimensional maps near the boundary crisis at 
fully developed chaos in the presence of weak Gaussian noise. We intro- 
duced a new method to calculate the quasi-invariant density W(x) which 
becomes asymptotically exact for small noise strengths a and distances A 
from the crisis. For simplicity, in the detailed discussion of this method in 
Section 3 we restricted ourselves to additive white noise and single-humped 
maps which are symmetric about the maximum of order z > 0 at x = 1/2 
and linear below the unstable fixed point at x = 0; see Fig. 1. The extension 
to more general maps and noises, including multiplicative and colored 
noise, was briefly outlined in Sections 5 and 6, while non-Gaussian dis- 
tributed noise will be treated in a subsequent publicationJ 221 

Our method for the determination of the quasi-invariant density W(x) 
can be considered as a kind of perturbation theory in two small parameters 
a and A. The unperturbed invariant density p(x) at the crisis z /=  0 in the 
absence of noise a = 0 is thus assumed to be known. In fact, W(x) coincides 
with p(x) for all e4x<. 1 - e ,  where ]A l, a , ~ e ~  1; see Eq. (47). It is only 
close to the boundaries of the unit interval where p(x) has singularities, 
that W(x) behaves substantially differently, staying smooth and finite, and 
outside the unit interval, where p(x) vanishes, while W(x) stays small but 
finite. More precisely, W(x) is given by Eq. (23) for x~> 1 - e  and by Eqs. 
(33), (36) for x~e; see also Fig. 3. Thus small variations of .4 or a may 
lead not to small perturbations, but to substantial qualitative changes of 
W(x) in certain x domains. In particular, our perturbation-like approach 
does not fit into the framework of a linear response theory. 126"39~ Rather, 
it reminds one of singular perturbation theory for differential equations ~4~ 
so far as the properties of the solutions are concerned, while the approach 
itself is completely different. 

Besides the assumption of small parameters zl and noise strengths a, 
we derived an additional necessary and sufficient condition (41) for the 
validity of the above results for W(x). Under this condition, our method 
overcomes the difficulties of any perturbation theory about fully developed 
chaos as discussed in detail by Grossmann, 1261 particularly with respect to 
a linear response theory for a deterministic map dynamics. ~39~ 

Our investigation is complementary to the work of Bene and 
Sz~pfalusy. Iv~ T~ey concentrated on weak multiplicative noises and small 
perturbations of the map at the crisis, which only lead to small changes of 
the invariant density for all x values in comparison with the unperturbed 
system in the absence of noise and thus allow a linear response theoryJ 26) 
The approach presented here is also complementary to the path-integral 
and WKB-like methods for maps with weak noise put forward in refs. 8, 
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24, 29, 31, 32, and 41: These methods are a powerful tool provided the noise 
strength a is sufficiently small in comparison with any other parameter of the 
system. In particular, for the problem considered here, they only apply for 
A values with zl , ~ - a .  On the other hand, the condition (41) must no 
longer be fulfilled. It can be shown that for small a and A fulfilling both 
A ,~ - - a  and (41) these methods lead to the same results as the approach 
presented here. Finally, it should be mentioned that concepts somewhat 
related to those in Section 3 have also been developed in ref. 42. However, 
the context in which these concepts are used is rather different from ours. 

From the quasi-invariant density we derived the central rate formula 
(52), which has the form of a scaling law and compares excellently with the 
results from numerical simulations shown in Tables I and II and in Fig. 5. 
Generalizations of this rate formula were given Sections 5 and 6, in 
particular for an extended class of single-humped maps f(x) with multi- 
plicative noise (60) in (61) and with colored noise (68) in (81); see also 
Fig. 6. Under certain conditions, a nonmonotonic dependence of the rate on 
the correlation time of the colored noise may occur, a phenomenon which 
has recently attracted considerable attention under the label 'resonant 
activation'. (3s) Moreover, within this extended class of single-humped maps 
and Gaussian noises we found that in the scaling law for the rate both the 
critical exponents and the scaling functions are universal for any fixed order 
z > 0 of the maximum of the maps. In other words, for fixed z and Gaussian 
distributed noise, any further details of the map and the noise enter into the 
scaling law of the rate only through the scaling amplitudes. (3~) 

By considering the escape rate for fixed parameter ,4 > 0 as a function 
of the noise strength a we found that deterministic transient chaos is stabi- 
lized by sufficiently weak but finite noise for any single-humped map with 
a maximum of order z > 1; see Fig. 4. As detailed in refs. 20 and 22, there 
is no simple intuitive explanation of this effect except in the limit f ' ( 0 )  ~ oo 
corresponding to a superunstable fixed point or a discontinuity of the map 
f(x) at x = 0. For fixed z > 1, the strongest possible noise-induced reduction 
min,.k(a)/k(a = 0) of the deterministic escape rate k(a = 0) is universal, in 
particular independent of the parameter ,~, and monotonically decreases as 
a function of z from 1 for z = 1 to 1/2 for z ~ oo. Numerical evidence and 
a heuristic argument for noise-induced stabilization of deterministic trans- 
ient chaos for noisy maps in more than one dimension near a particular 
boundary crisis called unstable-unstable pair bifurcation was also given in 
ref 5. While the effect seems to be more pronounced in the latter case, it is 
of broader universality in our case. 

Generalizations of the methods introduced here to maps near interior 
crises I~) and band-merging points and to systems in more than one dimen- 
sion are under investigation. 
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A P P E N D I X  A. S U F F I C I E N T  C O N D I T I O N  FOR (42)  

In this appendix we show that (42) holds in arbitrarily good 
approximation for sufficiently small a and A provided the condition (41) is 
fulfilled. We always assume that x e [e/u, e]. Thus, in particular, x > 0. We 
first show that if it is possible to find an integer N such that 

N>>I and e ~ > u N ( a U ~ + l d l )  (AI) 

is fulfilled sufficiently well, then one has in arbitrarily good approximation 

N - - I  B 
- -  x t'-'l/-- (A2) I ' | ' i ( X )  = l,I I1 :  - -  1 

i = l  

Since such an N can always be found for sufficiently small a and J ,  we will 
be left to find conditions such that the contribution of ~ = N  wi(x)  in (33) 
is negligible in comparison with (A2) in order to arrive at (42). To prove 
(A2), we first note that (A1) implies x~>u'l'41 and x+ui'4~auiUi for all 
i < N  [according to (37) we have x / ~ =  Uo<~ U~<~Uo~<~].  Thus (39) 
applies and the term u~A on the right-hand side can be neglected. With the 
approximation 1 - u - ' V / : =  1 this yields (A2). 

Next we address the sum Z ~  w~(x) in the case z > 1. We consider 
separately the following two possibilities: (i) If .4 >>aU~, then we have 
x + u".4 >> u'U~ a for all i >/N. Thus again (39) applies and it immediately 
follows that Z~=,vW~(X) is negligible in comparison with (A2) for suf- 
ficiently large N. (ii) If .4 is not very much larger than a U ~  or negative, say 
.4 <~ D a U ~  with D ~> 1 fixed, then we estimate each w~(x) from above by its 
maximum, which is approximately given by the right-hand side of (40). 
This implies that 

~'~ C C 1 
0<~ wi(x)<<. ~. u i ( a U ~ : _ ] , / : < < . - -  (A3) 

i=lV i=N " 1 - u  - l  u'V(aUo) ( : - i v :  

It follows that the sum Y ~ v  w,.(x) is certainly negligible in comparison 
with (A2) if 

u N t T ( :  - -  t ) / :  >> ~1:  - I) / :  (A4) 

It is straightfoi'ward to show that (A1) and (A4) can always be fulfilled 
simultaneously for sufficiently small a and .4 if 0 <~ .4 <~ D a U b .  If .4 < 0, the 
same follows under the (sufficient) extra condition (41). 

In the case z ~< 1 we note that for any fixed x and i the function w~(x) 
in (36) is monotonically increasing with '4. It thus is sufficient to estimate 
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the sum Y'-i~N w~(x) for d >>trUo~. As before, this implies that  (39) can be 
used, yielding 

• wi(x)=B ~, u-i/~[x+uid] "-=~/-- 
i = N  i = N  

(A5) 

It is s t ra ightforward to show that  for x �9 [e/u, e] the  sum (AS) is negligible 
in compar ison  with (A2) if (A1) is fulfilled. 

APPENDIX  B. NECESSARY CONDIT ION FOR (42) 

In this appendix  we construct  maps  f ( x )  with arb i t ra ry  z > 1 within 
per iodic  windows arbi t rar i ly  close to A = 0 such that  (42) is violated for 
d q  _crtZ-])/=. It has been shown in ref. 43 for the case z = 2  and can 
be readily generalized to any z >  1 that  there exist families of  maps  
parametr ized  by d as in t roduced at the beginning of Section 2 with the 
following propert ies:  one can find negative pa ramete r  values A inside 
certain per iodic  windows arbi t rar i ly  close to zero such that  the per iodic  
attractor { X l - f ( x p ) , x 2 - f ( x l )  ..... . x , - f ( X p _ l ) }  of f ( x )  has one 
element, say Xl*, very close to the max imum x =  1/2 o f f ( x )  and obeys 
x*+]>x*  for 3~i<~p,  where x,+* ] : = x * ,  see Fig. 7a. Since x*  is very 
close to x =  I/2, it follows with (3) that  x* = f ( x * )  is very close to x =  1 
and thus the l inearizat ion (5) applies for all x>~x*. Similarly, due to (4) 
and (5) the points  x* ,  x * ,  ..., x*  up to a certain I<~p are close to x = 0  and 

1 

o 

(a) 

o 
X 

0.5015- \-- 

~ 0.5 

/ 
0.4985 

0.4985 0.5 0.5015 
X 

Fig. 7. Example of a single-humped map f(x) inside a periodic window as considered in 
Appendix B. (a) The logistic map (8) at zt=-0.0024354026, the bisectrix y=x, and the 
stable periodic orbit {x~' ..... x~} of period p =  5. (b) A detail of the iterate fqx )  close to 
x= 1/2, the bisectrix y =x, and the element x~ of the stable periodic orbit. The points x~ and 
y*= I/2+tl are the unique stable and unstable fixed points offP(x) close to X =  1/2. The 
interval [l/2--t/, 1/2+t/] is mapped into itself by fP(x), as indicated by the square. The 
parameter d has been chosen such that the stable fixed point obeys x* = 1/2 + r//2; see (B6). 
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thus the linearization (4) applies for all x <~ x*. In the following we restrict 
ourselves to maps f ( x )  for which the linearization (4) is a reasonable 
approximation even for all x<~x*, such as in Fig. 7a. Since x* = f ( x * )  is 

* is close to x = 1/(2u). In other very close to x = 1/2, this implies that xp 
words, the linearization (4) is assumed to be a reasonable approximation 
for all x~< 1/(2u) independent of p. It is obvious that even within this 
additional assumption regarding f ( x )  we are still dealing with a generic 
situation. 

For x values close to x =  I/2 and thus to x* it follows that f i ( x )  
[denoting the i th iterate o f f ( x ) ]  is close to f i ( x * ) =  x*+l for 1 ~< i ~<p-  1. 
Thus, f 2 ( x ) = u ( 1 - f ( x ) )  according to (5). Similarly, one has f i ( x ) =  
uf  ~- t(x) for 3 ~< i<~p according to (4). With (3) we then find for x close to 
x = 1/2 that 

fP(x) =fP- - ' (u [  1 --(1 +A - b  I x -  1/21:)])= - u P - ' ( A - b  I x -  1/21 =) (BI) 

Thus, near x = 1/2 the iterate fP(x)  is a single-humped map with a local 
minimum of order z at x = 1/2 and is symmetric about this point; see 
Fig. 7b. The point x~* is a stable fixed point offP(x).  By differentiation of 
(BI) this yields 

d , zb Ix* - 1/2[-" 
- 1  <--~xfP(x] ) =  f i  f ' ( x * ) = u  p - '  i=l x * - - I / 2  <1 (B2) 

Since x * = f P ( x  *) is very close to x = l / 2 ,  we have in very good 
approximation that 1/2 =fP(1/2)  and thus we can conclude from (B1) and 
(B2) that 

1 p I ( A - b  

1 d ~/(--- t I 
= - - u P - ' A + u  -: 'p- j )  -~ ~-~x f r ( x  * ) (B3) 

By means of the inequalities in (B2) it follows from (B3) for sufficiently 
large p that 

! _  _u  p-  l A (B4) 
2 - -  

Thus, small negative parameters A are equivalent to large periods, which 
is quite obvious of course. 

Since x* is the only stable fixed point o f fP(x)  near x = 1/2, the inter- 
section o f f P ( x )  in (B1), with the bisectrix y = x  closest to x =  1/2 is at 
x = x* with a slope of modulus smaller than one; see (B2). Moreover, (B1) 
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implies that close to x = 1/2 there must be exactly one further intersection 
point 

y * =  1/2+q,  0 < q , ~  1 (B5) 

offP(x) and the bisectrix y = x. Clearly, y* is an unstable fixed point offP(x)  
with ( d / d x ) f P ( x = y * ) > l  and the interval [ l / 2 - r / ,  1/2+11] is mapped 
into itself byfP(x) ;  see Fig. 7b. Inside a particular periodic window we are 
still free to choose a value of x * -  1/2 between q (where the periodic 
window emerges by tangent bifurcation) and a certain ~ , - r / < ~ < 0  
(where the first period-doubling bifurcation inside the periodic window 
occurs). For later convenience, we make the following choice: 

x* = 1/2 + i//2 (B6) 

See Fig. 7b. Then, it follows from (B2) that 0 < ( d / d x ) f P ( x  *) < I. Further- 
more, closer inspection of (B1) shows that by fixing the relative distances 
of the fixed points x* and y* from x =  1/2 through (B5) and (B6), the 
derivative (d /dx ) fP (x )  at x = x *  becomes independent o fp  and hence of A. 
Similar universality properties of periodic windows have been studied in 
ref. 44. 

Next we use some results from the theory of generalized potentials 13~" 32~ 
or quasipotentials c241 for maps disturbed by weak noise. According to this 
theory, the quasi-invariant density can be written as 

W(x)  = Z~(x)  e-*C"v'-~ (B7) 

where the so-called generalized potential ~b(x) is independent of the noise 
strength a and the tr dependence of the prefactor Z~,(x) is weaker than 
exponential. In other words, for sufficiently small noise strengths the 
'Boltzmann factor' e -~1-'~/2~ dominates the behavior of the quasi-invariant 
density W(x)  in (B7). In the crease of a periodic window as we consider it 
here, the generalized potential has the following properties: First, it has a 
local quadratic minimum at x* of the form t32) 

4)(x* + 6 x ) =  ~"(x*) Ox'- + O((Sx 3) (B8) 
2 

where ~b"(x*) is given by 

2(1 - I-IP= i f ' ( x * )  2) 
r  2 ' . 2 , . 2 + f  (xp)  f (xT,_l) + . . .  +I--[ f=2f ' (x*)  z (B9) 
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Using the approximations (4) for x<~x* and (5) for x>>.x*, we can infer 
that 

2(1 --1--[P=,f'(x*)2)(u z -  1) 
r u-'p- 1 (B10) 

Second, for our choice (B6) of x*, neglecting the term O(~x 3) in (B8) 
yields a reasonably good approximation for r on the whole interval 
[x* ,y* ] .  (32) Third, the generalized potential is constant for x values 
between y* and a small neighborhood of x* analogous to the neighbor- 
hood [ 1/2 - q, 1/2 + r/] of x* .(,_4) The behavior of r for x < x* is similar 
but not further needed here. Thus, we find a potential difference between 
x=x* and the plateau beyond x=y* which is approximately given by 

AC=C(y,)_r ( y ,_x ,  )__ 2 ( ~)2 _ _  , ,  r  x * -  (Bl l )  
2 

where the last equality follows from (B5) and (B6). By means of (B2), (B4), 
and (B10) we can infer that 

_l-ii=,f(.xi) )(u _1) 2~b ~__, 2/1= d e = (  1 r , . ,  2 2 - l )  
-(,71-2X-~ = 7 f,( x* ) (B12) 

i 

p t . ~  As mentioned below (B6), the product I - I~=lf  ( x ~ )=  (d/dx)fP(x~) is a 
p- and thus d-independent quantity larger than zero and smaller than one. 
Hence, for small A we have Ar = const. IAI 2-'/(=- ~), where const is a A-inde- 
pendent positive constant. From (B7) and (BI 1) it then follows that 

W(x*) Z=(X*)exp{ eOnstr (B13) 
W(y*)-Z~(y*) ---2-\ -g I j 

Since Z~(x) is nonexponential in a, the quasi-invariant density W(x) 
becomes strongly a dependent near x= 1/2 for a ~ IAI :/(:- l). On the other 
hand, in Section 3.3 it is shown that under the assumption (42) one finds 
a a-independent W(x) near x= 1/2; see Eq. (47}. Thus, (42) cannot be 
valid for A ~ - a  ~:- ll/: 

A C K N O W L E D G M E N T S  

I would lilI.e to thank the theoretical physics group at the Limburgs 
Universitair Centrum for their kind hospitality during the realization of 
this work. Financial support by the Swiss National Science Foundation, 
the Freiwillige Akademische Gesellschaft, Basel, and the Program on 
Inter-University Attraction Poles of the Belgian Government is gratefully 
acknowledged. 



1500 Reimann 

REFERENCES 

1. C. Grebogi, E. Ott, and Y. A. Yorke, Phys. Rev. Lett. 48:1507 (1982); Physica 7D:181 
(1983). 

2. H. G. Schuster, Deterministic Chaos (VHC, Weinheim, 1988). 
3. S. Takesue and K. Kaneko, Prog. Theor. Phys. 71:35 (1984). 
4. F. T. Arecchi, R. Badii, and A. Politi, Phys. Lett. 103A:3 (1984). 
5. C. Grebogi, E. Ott, and Y. A. Yorke, Ergod. Theory Dynam. Syst. 5:341 (1985). 
6. R. L. Kautz, J AppL Phys. 62:198 (1987). 
7. J. Bene and P. Sz6pfalusy, Phys. Ret,. A 37:871 (1988) 
8. P. D. Beale, Phys. Rev. A 40:3998 (1989). 
9. I. N. Struchkov, Soy. Phys. Tech. Phys. 37:758 (1990). 

10. M. Franaszek, Phys. Rev. A 44:4065 (1991). 
11. J. C. Sommerer, E. Ott, and C. Grebogi, Phys. Rev. A 43:1754 (1991). 
12. J. C. Sommerer, Phys. Lett. 176A:85 (1993). 
13. A. Hamm, T. T61, and R. Graham, Phys. Lett. 185A:313 (1994). 
14. P. Reimann, Z. Natmforsch. 49a:1248 (1994); Heir. Phys. Acta 67:235 (1994). 
15. J. C. Sommerer et aL, Phys. Retd. Lett. 66:1947 (1991): J. C. Sommerer, In Proceedings of  

the 1st E.x'perhnental Chaos Conference, S. Vohra et al., eds. (World Scientific, Singapore, 
1992). 

16. M. Franaszek and L. Fronzoni, Phys. Rev. E 49:3888 (1994). 
17. J. A. Blackburn, N. Gronbech-Jensen, and H. J. T. Smith, Phys. Ret,. Lett. 74:908 (1995). 
18. G. Gy6rgyi and P. Sz6pfalusy, Z. Phys. B 55:179 (1984); J. Stat. Phys. 34:451 (1984). 
19. T. T6I, Transient chaos in Directions hi Chaos, Vol. 3, Hao Bai-lin, ed. (World Scientific, 

Singapore, 1990). 
20. P. Reimann, Phys. Ret,. E 50:727 (1994). 
21. P. Reimann, R. MiJller, P. Talkner, Phys Rev. E 49:3670 (1994). 
22. P. Reimann, Noisy one-dimensional maps near a crisis II: General uncorrelated weak 

noise, to be published. 
23. G. Mayer-Kress and H. Haken, J. Stat. Phys. 26:149 (1981); J. P. Crutchfield, M. Nauen- 

berg, and J. Rudnick, Phys. Reu. Lett. 46:933 (1981); B. Shraiman, C. E. Wayne, and 
P. C. Martin, Phys. Rel,. Lett. 46:935 (1981); E. B. Vul, Ya. G. Sinai, and K. M. Khanin, 
Uspekhi. Mat. Nauk 39(3):3 (1984) [Russ. Math. Surv. 39(3):1 (1984)]; D. Fiel, J. Phys. 
A 20:3209 (1987); P. Reimann and P. Talkner, Heir. Phys. Acta 64:946 (1991); 66:93 
(1993). 

24. A. Hamm and R. Graham, J. Star. Phys. 66:689 (1992). 
25. J.-P. Eckmann, L. Thomas, and P. Wittwer, J. Phys. A 14:3153 (1981); J. E. Hirsch, 

B. A. Huberman, and D. J. Scalapino, Phys. Rev. A 25:519 (1982) . 
26. S. Grossmann, Z. Phys. B 57:77 (1984). 
27. S. Grossmann, and S. Thomae, Z. Naturforsch. 32a:1353 (1977). 
28. P. Talkner, P. H/inggi, E. Freidkin, and D. Trautmann, J. Stat. Phys. 48:231 (1987). 
29. P. Reimann and P. Talkner, In New Trends hi Kramers" Reaction Rate Theolg~, P. Talkner 

and P. H~inggi, eds. (Kluwer, Dordrecht, 1995). 
30. I. S. Gradshteyn and I. M. Ryzhik, Table of bltegrals, Series, and Products (Academic 

Press, New York, 1980). 
31. P. Reimann and P. Talkner, Heir. Phys. Acta 63:845 (1990). 
32. P. Reimann and P. Talkner, Phys. Rev. A 44:6348 (1991). 
33. M. E. Fisher, In Lecture Notes Physics, 186, F. J. W. Hahne, ed. (Springer, Berlin, 1983), 

Section 3.4. 
34. T. Geisel and J. Nierwetberg, Phys Rev. Lett. 48:7 (1982). 



Noisy One-Dimensional Maps Near a Crisis 1501 

35. F. Moss and P. V. E. McClintock, eds., Noise in Nonlinear Dynamical Systems, Vol. 1 
(Cambridge University Press, Cambridge, 1989). 

36. P. Reimann and P. Talkner, Helo. Phys. Acta 65:882 (1992). 
37. P. Reimann, Phys. Reo. E 49:4938 (1994). 
38. C. R. Doering and J. C. Gadoua, Phys. Rev. Lett. 69:2318 (1992). 
39. T. Geisel, J. Heldstab, and H. Thomas, Z. Phys. B 55:165 (1984). 
40. C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and 

Engineers (McGraw-Hill, New York, 1978). 
41. R. Graham, A. Hamm, and T. T~I, Phys. Rev. Lett. 24:3089 (1991). 
42. R. Garcia-Pelayo and W. C. Schieve, J. Math. Phys. 33:570 (1992). 
43. T. Geisel and J. Nierwetberg, Phys Ret,. Lett. 47:975 (1981). 
44. J. A. Yorke, C. Grebogi, E. Ott, and L. Tedeschini-Lalli, Phys. Rev. Lett 54:1095 (1985). 


